
 Calculution Policy Notes and Guidance
show the links between different operations.
 teaching of different concepts. These provide different models and images that can support the

 This document is broken down into addition and

 are 5 times more boys than girls. How many boys are
there? type of problem, e.g. There are 3 girls in a group. There case, more than one bar model is useful to represent this Sometimes, children may look at scaling problems. In this

It is important when solving word problems that the bar

groups.

bar model and then dividing the bar model into equal
Division can be represented by showing the total of the
model to represent the multiplication. calculation before moving on to placing digits into the bar counters, cubes or dots within the bar model to support multiplication as repeated addition. They could use Children can use the single bar model to represent

$\triangle G$
$\times \times$
$G D$
|| ||
N N
$18 \div 3=6$

\section*{| 2 |
| :--- |
| $\frac{2}{3}$ |
| 0 |
| $\mathbf{9}$ |
| 1 |
 Θ}

 shape they are dividing by over the top of the number to
 understanding of division as grouping. Children make the When dividing, number shapes support children's

 multiplication can support children in discovering row to check the total. Using the number shapes in along with other necessary shapes over the top of the the row. They can then use the tens number shapes children to interlock the shapes so there are no gaps in number shapes. When using odd numbers, encourage

Children can build multiplications in a row using the
multiplication as repeated addition.
Number shapes support children's understanding of

∞
 st!fəuə

group the beads into groups of four. Count how many are dividing by e.g. 20 divided by 4 - Make 20 and then

count.
and backwards in multiples, moving the beads as they
Children can also use the bead string to count forwards
number e.g. 4, 8, 12, 16, 20.
Encourage children to count in multiples as they build the
efficiently.
groups of 10 they have, to calculate the total more
colour of beads supports children in seeing how many
Children can build the multiplication using the beads. The
understanding of multiplication as repeated addition.
Bead strings to 100 can support children in their

∞

$8 \mathrm{l}=9 \times \varepsilon$
$8 \mathrm{~L}=\Sigma \times 9$

г
$\cdot \|$ Δ II Θ

$O Z=\nabla \times G$
$O Z=G \times \nabla$

line. become larger due to the required size of the number multiples, however they become inefficient as numbers
 the answer to the division. Children record how many jumps they have made to find by until they reach 0 .
the count back in jumps of the number they are dividing When dividing, start at the number they are dividing and to find the product of the numbers.
When multiplying, children start at 0 and then count on
calculating single-digit multiplications. count in multiples, forwards and backwards as well as Labelled number lines are useful to support children to

∞ st!fouə

children to represent scaling.
Blank number lines without intervals can also be used for
with multiples to calculate scaling problems.

Blank number lines with intervals can support children to
as multiplication or division.
Children can use blank number lines to represent scaling
g
UO
元
stly

 can be linked to the grid method or the formal column
 rectangular shape which they then find the area of by well. Children use the equipment to build the number in a

Base 10 also supports the area model of multiplication
and number of exchanges needed.
becomes less efficient due to the amount of equipment amounts of groups becomes higher, Base 10 / Dienes

As numbers become larger in multiplication or the
concrete and written representations match. alongside the equipment so they can see how the important that children write out their calculation children's understanding of column multiplication. It is Using Base 10 or Dienes is an effective way to support

∞ əuว

with mental methods. been partitioned in order to divide. This will support them
whole model so they can consider how the number has When recording, encourage children to use the partleft in a column, they exchange e.g. one ten for ten ones.
place value and work from left to right. If there are any
When they are sharing, children start with the larger
rows on a place value grid.
between different groups e.g. by drawing circles or by
divide. Children can then share the Base 10/ Dienes towards representing them as tens and ones in order to
to move children from representing numbers as ones
When numbers become larger, it can be an effective way
children's understanding of division.
Using Base 10 or Dienes is an effective way to support
Benefits

（1）${ }^{1}$	教
8 8 8 8 88 8 8 8 8 8	产
1000	$\frac{\sqrt{3}}{3}$
$\begin{aligned} & -O- \\ & -O-O \end{aligned}$	일

$\left.\frac{268 D}{\text { ¿टてl }} \right\rvert\, \nabla$

OL əseg səu！！dəquinN so̊u！us peag səmeıf Uə」	Kəu૦W sıəłunoう sədeys ıəquinN əдenbs paıpunH	乙	әј૧еł səu！l－OL pue uo！！eכ！！d！！！ әsn pue ןeכəy
słวə！̣о Керイıə＾ヨ səu！！dəqunn solu！uts peag səme»f Uə」	KəuоW sıətunoう sədeys ıəquinN ןpou ıeg	$乙$	әృ૧еł səu！！－G pue uo！！eכ！！d！！！ əsn pue ןleכəy
słวə！̣о Керイıəへョ səu！！dəqunn s̊ిu！lıs peəg səme»f Uə」	KəuоW s．əłunoう sədeys ıəquinN ןppou ıeg	乙	ә્વеł səu！！－乙 pue uo！！eכ！！d！！！ әsn pue ןeכәy
sןopou pue suo！łełuәsəıdəy		102入	I！！YS

				$\stackrel{\text { N }}{\underline{\lambda}}$
-	w	w	w	¢
$\begin{array}{lc} \text { Hundred square } & \text { Bead strings } \\ \text { Number shapes } & \text { Number tracks } \\ & \text { Everyday objects } \end{array}$				

				$\stackrel{N}{\hat{\vdots}}$
\perp	-	-	-	¢
				T0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

	$\xrightarrow{\text { ¢ }}$

	sıəృuño əกןe＾əગセld	G	sıəqunu భ！！！！ －ı Kq
роцłəШ Uət！！м＋ıOपS	OL əseg sıəృunoว əกןе＾əวણld	†	sıəqunu భ！o！！ － 1 Kq ب！
рочдәш иәт！！！м рәриedxョ рочłәш иәt！！м ұочS	OL əseg 	∇ / ε	sıəqunu t！！！！
səu！ן dəqunn sซึu！̣łs peəg səme»t uә」	sıəృunoう sədeys ıəqunn ןəpow лeg	Z／L	uo！！eo！！d！！！nu प！！M swajqoad dəłs－əuo ә＾｜OS
sjopour pue suo！fełuəsəıday		1e2入	I！！YS

	рочłəШ Uәt!!גм	9/9	sıəqunu
рочłəய م!̣ŋ рочłəய UӘt!!м łıOपS	sıəıunoว əกן¢^ əวeld	9	sıəqunu
рочłəய م!̣ŋ рочłəய Uəł!!м ł」OपS	OL əseg sıəłunoว əกןе^ əગeld	9	sıəqunu t!oి!
sjopom pue	efuesəıdəy	лeә入	I!! \S

роцłәш
the use of the written children can focus on multiplication grids so encourage the use of times tables,
struggling with their
numbers and
multiplying larger
If children are method. formal written understanding of the
children in their
to use to support

value counters are
digit numbers, place
When multiplying 4-

G:」eə入

łUӘłS!SUOJ S! S!પł ӘגNs
placed and make
exchanged digits are
Consider where
use of the method.
are focusing on the
Кәцł иәчм \downarrow ıoddns
multiplication grids to tables, provide
struggling with times
If they are still
confident in the
written method.
children should be
digits by 2-digits,
When multiplying 4-

Year: 5/6

N

	v	\rightarrow	N N	\times		긱
	の	-	\cdots		N	Ј
-	σ	\rightarrow	${ }^{\omega}$		v	エ
	\bigcirc	∞	$\checkmark \sim$	N	w	\dashv
	N	\bigcirc	N	∞	\bullet	\bigcirc

ןәрош әјочм－ұедд 	jppour leg Ol əseg smedts	ε	（әรัиечЈхә
ןррош әјочм－дехд 	popou ıeg OL əseg sments	ε	（8u！ueys әธิиечэхә ou）！！！！！ －ı Кq sц！̣！！
sıəłunoj sरeגı səu！！dəquinN	səme»t uə」 sฉิu！lıs peag sədeys дəquinN słכә！q๐ ә！！！ן ן	Z／L	（8u！${ }^{\text {dnoı8）}}$ uo！s！ı！！p प！！M swajqoud dәłs－әио әлјоS
sıäunoj sイentV	słכә！qo ә！！！！ן ן ןррои лед	z／L	（8u！ueys） uo！s！ৎ！p प！！！swəjqoud dәұs－әио әлјоS
sןəpou pue suo！̣ełuəsəıdəy		лед入	ו！！Y

uo！s！！！p HOYS uәれ！！！M 	sıəłunoう sıəృunos əпןе＾əวeld	G／t	（8u！
ןрош әрочм－ұедд sıəłunoว əпןе＾əગe｜d	ppou лeg Ol əseg	†	（ә8ిuецэхә －ı Kq st！！！！
 	sıəłunoう sıəłunoد ənje＾əગeld	G／ヤ	（8u！ －ı Kq sч！！！！$\rho-乙$ әр！＾！○
ןәрош әјочм－ұехд sıəұunoว әпןе＾əગe｜d	ןррош лед OL əseg SMEAFS	૪／乏	（sıəри！̣ешə」 －ı Кq sч！！！！
spopour pue suo！lełuesarday		лед入	I！YS

		9	（uo！s！ৎ！！siuol）st！！！！p－乙
	uo！s！ı！${ }_{\text {do }}$	9	（uols！！！！ ночs）st！！！！p－乙 Kq st！！！！
 	sıəłunoう 	G	（8u！$)$ －ı Kq sب！｜！！
sןəpou pue suo！̣ełuəsaday		1е2入	ו1！YS

	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{\square}}$

†כnpoıd e әyeu of ләyłoue
Factor - A number that multiplies with for another of an equal value. Exchange - Change a number or expression
Divisor - In division, the number by which
another is divided. divided.
Dividend - In division, the number that is in any order.
Commutative - Numbers can be multiplied
cubes or other item in rows and columns. Array - An ordered collection of counters,

Scaling - Enlarging or reducing a number by
the dividend.
division when the divisor is not a factor of
Remainder - The amount left over after a
Quotient - The result of a division
number by another.
Product - The result of multiplying one

be multiplied by another.
Multiplicand - In multiplication, a number to

